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NUMERICAL SOLUTION OF AXISYMMETRIC CAVITY 
FLOWS USING THE BOUNDARY ELEMENT METHOD 

L. C .  WROBEL 
Wessex Institute of Technology, liniwrsity of Portsmouth, Ashurst Lodge, Ashurst, Southumpton SO4 ZAA, U.K.  

SUMMARY 

This paper presents a formulation of the boundary element method (BEM) for solution of axisymmetric 
cavity flow problems. The governing equation is written in terms of Stokes’ stream function, requiring a new 
fundamental solution to be found. The iterative procedure for adjusting the free-surface position is similar to 
that used for planar cavity flows. Numerical results are compared with finite difference and finite element 
solutions, showing the robustness of the BEM model. 
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INTRODUCTION 

This paper presents an extension, for axially symmetric problems, of a recently developed BEM 
algorithm for planar cavity flows.’ The basic assumptions are that of potential flow past a disk, 
placed perpendicular to the flow direction, in a channel of finite width and infinite length. 
Immediately behind the disk a cavity is formed containing air at a constant pressure; the primary 
objective of the study is to find the shape and size of this cavity. 

The closure model adopted, proposed by Riabouchinsky,* assumes that an image disk can be 
placed in the flow at some point downstream from the original disk and that the flow geometry 
will be symmetric about the line midway between the disks (Figure 1). Owing to the axial 
symmetry of the flow, only one-quarter of the region in Figure 1 needs to be considered in the 
numerical analysis (Figure 2). 

For two-dimensional problems, the governing equation for both the velocity potential and 
stream function is Laplace’s equation. For axisymmetric problems, however, while the governing 
equation for the velocity potential is also Laplace’s, the same is not true for the Stokes’ stream 
function. Because the iteration algorithm to determine the free-surface position is better suited to 
a stream function scheme, an appropriate BEM formulation had to be developed. This required 
the derivation of an integral equation through a recip-ocal theorem, and finding a fundamental 
solution specific to the problem. 

The iteration algorithm for determining the free-surface position is similar to that of 
Reference 1. No special consideration is given to the singularity at the separation point, which 
was accounted for by local refinement. Numerical results are compared with available finite 
difference (FDM)3 and finite element (FEM)4 solutions. 
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Figure 1 .  Riabouchinsky cavity model 

FORMULATION OF THE PROBLEM 

A sketch of the Riabouchinsky cavity model adopted in this work can be seen in Figure 2. The 
computational region is truncated at a certain distance upstream, where the flow is assumed to be 
parallel to the channel walls. 

For the steady, irrotational, axisymmetric flow of an incompressible, inviscid fluid the follow- 
ing equations apply using cylindrical co-ordinates (x, r ) :  

du 1 du -+- u+-=O (continuity), 
ax r dr 

au c'v 
o7r ax 
__-_ - 0 (irrotationality), 

p ++ p q 2  + p g r  = /3 (Bernoulli), (3) 

in which u, u are the velocity components in directions x and r, respectively, q = ( u 2  + is the 
velocity magnitude, p is the pressure, p is the fluid density, g the acceleration due to gravity and 
6 is Bernoulli's constant. 

Introducing the Stokes' stream function II/ such that 

1 all/ u=--- 1 all/ u=-- 
r d r '  r ax 

Figure 2. Definition of problem region 
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and substituting into (1) and (2), one notes that the continuity equation is identically satisfied and 
the irrotationality condition gives rise to the equation 

0"2* 1 d$ 0 2 *  
(ir2 r d r  +-=O. ax2 (4) 

The boundary conditions of the problem are as follows, referring to Figure 2: line ABCD is 
a streamline and, without loss of generality, its value can be set to $ =O. The channel wall, line EF, 
is also a streamline with value t+b = i+hH = q 0 H 2 / 2 ,  in which qo is the onset velocity magnitude and 
H the channel radius. Line DE is a symmetry axis; so, .?$/0"x = 0 can be applied. At the truncating 
boundary AF the velocity field is parallel to the channel wall; thus, it is possible to apply either 
$ = q0r2/2  or l?ll//dx = 0. 

The problem is solved by assuming an initial guess for the free-surface position and using 
Bernoulli's equation to correct it during an iteration process. It is customary to assume that the 
hydrostatic pressure is approximately uniform over the region of interest and to neglect the effects 
of gravity; as a consequence of (3), the fluid velocity is uniform in magnitude on the free 
streamline. This is an accurate assumption when g r e q 2 ,  which holds true in this case.5 

Denoting quantities referenced to the cavity or free streamline by the subscript c, we may write 
from (3) 

in which p e  = p - p ,  and the constant value of the pressure p c  has been incorporated into p. This 
expression permits computing the pressure at any point once the velocity field has been 
determined. 

P e + i P q 2  = B ,  ( 5 )  

An important parameter in cavity flows is the Prandtl cavitation number 0, defined by 

The problem can be made non-dimensional by putting 

x*=x/H, r '=r /H,  q*=2q/q0. 

The mathematical problem to be solved is then described by the following equations (dropping 
the asterisks for simplicity): 

on AB, BC, CD, 

on EF, 

-- -0 on AF, 
O"X 

1 l?$ 
r 0"n 

- q, on CD, 

with the cavitation number given by 
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It is noted that the value of qc is to be determined as part of the solution of the problem, together 
with the location of the free surface CD. 

BOUNDARY INTEGRAL EQUATION 

The first step in the BEM formulation is to obtain a boundary integral equation equivalent to 
equation (6). In the present case, we start from the reciprocal theorem: 

which is valid in a region R bounded by the contour r. In the above expression, $ and $ * are any 
two regular solutions of equation (6). 

The above theorem can be proved as follows: 

Since the expression between brackets in the first integral is zero (equation (6)), the final result is 

In a similar manner, it is possible to show that 

The theorem is then proved by subtracting (14) from (13). 

boundary-value problem and $ * is the fundamental solution of equation (6), given by6 
The next step in the formulation is to consider that I,$ is the required solution of the 

where 

a = r 2 ( 0  + r2W + Ex(0-x(x)l2, 
b=2r ( t ) r ( x ) ,  

in which 5 and x are the source and field points, and K = K(m) and E = E(m) are the complete 
elliptic integrals of the first and second kind, respectively, with parameter m = 2b/(a + 6). The 
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derivative of $* with respect to the normal is of the form 

The fundamental solution I) * presents a discrete, weak singularity when the source and field 
points are coincident, for in this case u=b, m = l  and E(m)= 1, K(m)-ln(1 -m)+-m.' Hence, 
for the reciprocal theorem (12) to be valid with $* given by (15), it is necessary to exclude the 
source point 5 by surrounding it with a small circle of radius E centred at the source point, in the 
form 

Taking the limit as 1-0, the following results are obtained: 

Thus, equation (17) takes the form 

If the source point ( is a boundary point, the above equation is modified as follows: 

in which c(<) is a geometric coefficient dependent on the location of the source point.' 
It is interesting to note that, for a point on the axis of revolution (i.e. r(()=O or r(X)=O), we 

have b = 0, m = 0, E = K = 4 2 .  These values lead to $ * and 13$ * / d n  both being equal to zero. 
Thus, there is no need to include the rotational symmetry axis AB in the numerical analysis, 
which is consistent with the BEM formulation of axisymmetric problems.' 

NUMERICAL SOLUTION 

For the numerical solution of the problem, the boundary r (the generating contour BCDEFA 
in Figure 2) is subdivided into a number of straight elements. Linear interpolation functions are 
then introduced to relate the variation of the functions within each element to their values at the 
nodal (extreme) points. 

The variables considered in this work were I) and q=(l / r ) (d$/dn) ;  it is also possible to 
consider a$/& as a variable and calculate q 'a posteriori', but the difference in the numerical 
results is negligible. 

The symmetry axis DE was taken into account by reflection and condensation as discussed by 
Brebbia et al.' This is similar to considering image sources, and avoids the discretization of the 
symmetry axis. Thus, the discretized version of equation (19) becomes 

M 
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in which M represents the number of boundary elements along the lines BCD and EFA, 
4 * ( 5 ,  x)=(l /r(x))(Z$*(l ,  x ) / d n ( x ) ) ,  N1 and N 2  are linear interpolation functions, and q1, 41, $ 2 ,  

q2 represent nodal values of each element. 
Equation (20) can be written in assembled form as follows: 

where the subscript i stands for values at the source point. The above equation relates the value of 
$ at the source point to M boundary values of $ and q, half of which are prescribed as boundary 
conditions. Since equation (21) is valid at any boundary point, we apply it, using a collocation 
technique, to the M nodal points of the discretization, generating a system of algebraic equations 
which is formally written as 

Hyl= Gq. (22)  

Introducing boundary conditions (7) along lines BC and CD, (9) on EF and (10) on FA, and 
reordering (22), the final system can be solved by using a standard technique such as Gauss 
elimination. 

The coefficients of matrices H and G are the result of integrations over boundary elements. The 
off-diagonal coefficients involve the evaluation of regular integrals; this is done by using a stan- 
dard Gauss quadrature, with the number of integration points determined as a function of the 
distance between source point and element under consideration. 

The diagonal coefficients of both matrices require the evaluation of singular integrals. For the 
coefficients Gi,, the singularity is logarithmic and the corresponding integrals are calculated using 
an adaptive Gauss quadrature scheme developed by Telles.' On the other hand, the coefficients 
Hi involve not only logarithmic singular integrals but also stronger ones, which have to be 
computed in the Cauchy principal value sense. For them, a modification of Telles' scheme 
proposed by Cerrolaza and Alarcon" is employed. 

ITERATION ALGORITHM 

For the numerical solution of the problem, an initial free-surface location is assumed. The BEM 
solution then produces the value of 4 ,  at each point along the free surface. These values are all 
equal for the correct free-surface position (but, of course, not for the assumed one), and it is 
essential that a procedure be devised to properly move the free surface in the steps of the iteration 
scheme so that the constant-velocity condition be more closely satisfied on the moved streamline. 

With the objective of obtaining a relation between increments of 4 ,  and r on the free-surface 
points, we define 4 as the average velocity in a vertical section of the flow. Thus, the flow rate 
Q can be expressed as 

Q = q.(HZ - I 2 )  (23) 
or, in non-dimensional form, 

q ( 1 - r 2 ) = 1 .  

The next step is to derive an approximate relation between 4 and 4 , .  It is noted that, in the 
region behind the disk, q(x) should increase with x and be lower than the free-surface velocity 4, .  
The following empirical relation was then adopted, similarly to Reference 1, 

4134,-  i - ~  
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which complies with the previous requirements. Substituting in expression (24), we obtain 

1 
r q c r = l  or qc=-. (26) 

The iteration procedure will then be as follows: 

(i) Assume an initial free-surface location. 
(ii) BEM solution provides qc along the free surface. 
(iii) Calculate p at each free surface node i, i.e. 

(27) 2 
B i = 3  ~ q c i .  

(iv) Calculate Api=pC-Bi, in which fiC is the value of p at point C, the separation point. This 
value was selected because point C, the disk tip, is a fixed free-surface point. 

(v) Calculate Ari  by substituting (26) into (27) to obtain 

(vi) Compute the relative norm of increments 

where Mf is the number of free-surface nodes. If the norm is smaller than a specified 
tolerance F ,  the process has converged and is terminated; otherwise, the free surface is 
moved to a new location given by ri - r k +  o Ark+', with o a relaxation parameter, and 
the process returns to step (ii). 

h + l -  

RESULTS O F  ANALYSES 

Some results are now presented concerning the problem depicted in Figure 2. For simplicity, we 
call E = d ,  z = L ,  ==h and E = u .  

For specified values of u and d, the problem contains three free parameters, i.e. L, b and qc ,  and 
one more needs to be prescribed to define the problem fully. As pointed out by Aitchi~on,~ the 
natural choice from the physical point of view is to fix qc ,  which is equivalent to specifying the 
pressure far upstream. However, small changes in the pressure lead to large changes in the cavity 
length, and the problem becomes more difficult from the mathematical point of view. Thus, it is 
preferable to fix the length L and compute h and qc as part of the solution. 

Results are presented in Table I for d =0.25, L= 1.0. These results were obtained using two 
different initial guesses for the free surface: the straight line r = d and a quarter of an ellipse with 
the centre along the line at r=d, and semi-axes L and 0.15. Also presented are the FEM 
solution of Aitchison4 and the FDM one of B r e n n ~ n . ~  

The results of Brennen3 were given in graphical form, and the FDM values quoted in Table I 
have been extrapolated from these graphs. The FDM formulation employed a transformed 
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1 
1 
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- ITERATION 5 
WZ-Z-- ITERATION 10 
6+++0 ITERATION 20 

Table I. Results for d=0.25, L= 1.0 

Method b CJ 

BEM 
FEM 
FDM 

0.455 0.690 
0.4 1 2 0.548 
044 0.66 

(4, +)-plane (4 being a velocity potential) where the flow region becomes rectangular. The 
problem solution required a graded mesh, point-by-point Gauss-Seidel iteration, over-relax- 
ation, a special treatment of the singularity and the optimization of some parameters to obtain 
a stable and convergent scheme. Brennen3 also performed experimental tests in a water tunnel 
which confirmed the accuracy of his numerical results. The FEM procedure employed a refined 
moving mesh of linear triangular elements, computing the free surface position through a discrete 
minimization problem using a quasi-Newton method. This was solved repeatedly for different 
assumed values of qc until the average pressure in all elements was positive. 

The BEM discretization employed only 40 linear elements, with nine elements along the disk 
(line BC), 15 along the free surface (line CD), 12 along the channel wall (line EF) and four along 
the truncation boundary (line FA). The discretization was graded due to the singularity at the 
separation point C such that, along the free surface, the elements' lengths vary from around 
00125 near point C to 0 2  near point D. 

and a small 
value of the relaxation parameter w = 0.05 to control oscillations which predominantly appear in 
the first few iterations. The results, however, were insensitive to the initial free-surface position. 
The convergence pattern for the two different assumed positions is depicted in Figures 3 and 4. It 

The BEM solution required a large number of iterations for a tolerance E =  

0.50 

0.45 

0.40 

0.35 

0.30 

0'25 0 20 0.00 L_. 0.20 0.40 0 60 0 80 1 00 

Figure 3. Convergence pattern for straight line as initial guess (distorted scale) 
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- tTERATION 5 - ITERATION 10 - ITERATION 15 

0.30 0.20 0.40 0.60 0.80 1 00 

Figure 4. Convergence pattern For ellipse as initial guess (distorted scale) 

can be seen that both cases converge to the same solution, and that the initial oscillations in 
Figure 3 were quickly dampened. 

Tables IT-TV depict the results obtained by the three methods for the cases of d=0-25, L=O5; 
d=0.125, L= 1.0; and d=0.125, L=0.5. Also included in Table TI1 is the FDM result for 
CJ obtained by Fox and Sankar" using the Regula-Falsi method, with no special considerations 
for the singularity at the separation point. All tables show the same pattern of results, with good 
agreement between the present BEM and FDM values interpolated or extrapolated from 
Brennen's  graph^,^ and with the FEM consistently predicting lower values. 

Table 11. Results for d = 0.25, L = 0.5 

Method b 0 

BEM 
FEM 
FDM 

0.398 0794 
0.358 0.637 
0.40 0.73 

Table 111. Results for d=0125,  L =  1.0 

Method b 0 

BEM 0.296 0.288 
FEM 0.250 0.209 
FDM 0.29-0.30 0.28-0.29 
R-F - 0.113 



854 L. C. WROBEL 

Table IV. Results for d=0,125, L=0.5 

Method 6 0 

BEM 0.245 0.375 
FEM 0,203 0.275 
FDM 024-025 0.34-0.35 

Table V. Values of $ along the truncation 
boundary FA for d = 0.25, L = 1.0, q,  = 2 

r BEM Exact 

0.25 0.0623 0.0625 
0.50 0.2495 0.25 
0.75 0.5616 0.5625 

It is interesting to point out that in all cases the truncation distance a was assumed equal to 2. 
The correctness of this assumption was verified from the calculated variation of II, along the line 
FA, which agreed very well with the exact values (see Table V). 

CONCLUSIONS 

The BEM procedure for solving axisymmetric cavity flow problems described in the present 
paper has been shown to work well for a series of geometric configurations. The results obtained 
compare very favourably with the FDM ones of B r e n ~ ~ e n , ~  while the data preparation effort and 
computer time for the BEM are much smaller. 

It may be possible to speed up the iteration process by considering a more realistic relationship 
between ij and q, than that given by expression (251, although several have been tested with no 
significant differences. It is noted, however, that any improvement will be in efficiency rather than 
in accuracy, since the algorithm already produces results which are accurate and insensitive to the 
initial position assumed for the free surface. 
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